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ABSTRACT

Three numerical simulation codes that compute the added resistance in waves, SWANI,
LAMP2 and VERES, are evaluated using model test data of the Joint High Speed Sealift (JHSS).

The added resistance tests were conducted with the Model 5633-3 with the scale ratio of
34.121. This model has the JHSS conventional Baseline Shaft and Strut hullform with
Gooseneck Bulb. The model was free to heave, pitch and roll. The model tests were conducted in
regular head waves at two full-scale ship speeds of 25 and 36 knots, with Froude numbers of
0.24 and 0.35, respectively.

The comparison between numerical simulation results and test data show that heave and
pitch motions are well predicted by all three codes evaluated. For the added resistance, SWANI,
LAMP2 and VERES produced good agreement with the test data. SWANI1 produced the best
predictions for the added resistance as well as the heave and pitch motions.

ADMINISTRATIVE INFORMATION

This work was funded by the Joint High Speed Sealift (JHSS) program office, NAVSEA
PMS 385. This work was performed by the Seakeeping Division Code 5500 of the Naval Surface
Warfare Center, Carderock Division (NSWCCD) under work unit numbers 07-1-2125-146 and
08-1-2125-146.

INTRODUCTION

As a part of the High Speed Sealift Development Program [1]’, the numerical simulation
tools that can compute the added resistance in waves are evaluated using model test data of the
Joint High Speed Sealift (JHSS). The added resistance in waves is defined as the difference
between the time-average resistance in waves and the calm-water resistance at the same ship
speed. The information about the added resistance is important to estimate the reserve power
requirements for high speed ships in a sea state in severe weather.

There are many causes that contribute to the added resistance [2]. Vossers [3] and Hanaoka
et al. [4] suggested that there were three main components in the resistance of a ship in waves.
These are the interference between incident waves and waves generated by ship motions, the
wave reflection against the ship, and a damping force. The damping force could be measured by
an experiment with forced/prescribed heaving and pitching motions in calm water. In general,
the resistance force due to the wave interaction is the largest contributor to the added resistance.

" References given on page 29.



Several theoretical approaches exist to compute the added resistance [5 -13]. A good
summary of various theoretical approaches can be found in Strom-Tejsen et al. [2]. One
conclusion that can be drawn from these analyses is that added resistance is proportional to the
square of the incident wave height. These theoretical analyses also show that the added
resistance is dependent on the ship motions and their phase relationship to the wave field. The
added resistance in a seaway is independent of calm-water resistance. It is also believed that
added resistance can be considered as a nonviscous phenomenon and therefore can be
determined by inertial and wave effects.

In this report, various added resistance simulation codes including SWANI1, LAMP2 and
VERES were used to compare with the model test data. Only the head sea condition was
considered since it usually produced the maximum added resistance. Model tests were conducted
with the Model 5633-3 with the Joint High Speed Sealift (JHSS) conventional Baseline Shaft and
Strut (BSS) hullform and Gooseneck Bulb (GB). The model was restrained in surge, sway and
yaw motions, but was free to heave, pitch and roll. The full-scale speeds of 25 and 36 knots, with
Froude numbers of 0.24 and 0.35, respectively, were tested.

NUMERICAL CODES EVALUATED

SWAN1

SWANI (Ship Wave ANalysis) [14] is a hydrodynamics program that computes the steady
and unsteady flow solutions around a single-hull ship. It is a potential flow solver of the linear
steady and time-harmonic free-surface flow around a ship. The ship can move with a constant
forward speed in clam water and in waves. SWAN1 computes the flow properties inside the fluid
domain, over the hull and on the free surface. Integrated hydrodynamic forces acting on the
vessel are also computed by pressure integration over the hull as well as momentum analysis. It
uses a three-dimensional Rankine panel method. Panels are distributed on the ship hull and part
of the free surface. The use of the Rankine source as the Green function, combined with an
iterative method for the solution of the resulting linear systems, leads to the efficient solution of
the seakeeping problems. The ship wave resistance is determined by a wake analysis, which
evaluates the momentum deficit in the Kelvin wake. Flat plate friction resistance and form
resistance are not evaluated by SWANI.

SWANI requires two mandatory input files. The first one specifies the ship geometry as a
set of offsets. Bilge keels and skeg can be included at each station. The other input file defines
job control parameters such as ship speed, wave headings, frequencies, ship inertia, etc. SWANI1
produces a free surface, wake sheet, and hull mesh automatically from the hull offsets.

The lower limit of the ship speed is subject to the numerical stability constraint. As speed
decreases, short wavelengths in the wave pattern become more pronounced and the panel size
must become smaller. The lower limit of SWANI1 simulation is set at Fr = 0.1 and the upper
limit of the ship speed is set at Fr = 1.5.



LAMP2

LAMP is the SAIC three-dimensional time-domain Large-Amplitude Motions Program
[15]. It calculates time-domain motions and loads of floating bodies with or without forward
speed using 3-D potential flow panel method. The hydrodynamic solution computes the
combined effect of forward speed, body motion (i.e. the radiation problem), and the interaction
with the incident wave (i.e. the diffraction problem) using a choice of singularity models and
computational approaches.

In LAMP2, the 3-D body-linear approach is used to compute the hydrodynamic part of the
pressure forces. It uses the free surface boundary conditions on the mean water surface.
Meanwhile, the hydrostatic restoring force and the Froude-Krylov wave force are calculated on
the actual hull surface below the incident wave surface.

LAMP uses a straightforward time stepping procedure in which all forces acting on the
body are computed at each time step for the actual ship position and motion history. The position
and velocity of the ship are updated by integrating the equations of motions in the time domain.

Viscous effects are not included in this potential flow solver, although they are included as
external forces in the overall force calculation. Semi-empirical formulations or user specified
coefficients are used for the viscous forces.

The added resistance is calculated from the time dependent surge forces obtained from
LAMP?2 simulations. It is obtained as the difference between the average surge force in waves
and the calm-water resistance at the same ship speed.

VERES

The ShipX Vessel Response Plug-In is a ShipX implementation of the VEssel RESponse
program (VERES) [16, 17]. ShipX is Marintek’s common platform for ship design analyses.
VERES is based on linear potential theory. The theory is developed for moderate wave heights
inducing moderate motions on a slender ship. The hull is defined by a set of body lines at freely
selected longitudinal positions. The cross-sections of the hull are specified by a number of offset
points.

VERES can be applied on mono-hull and multi-hull vessels at low as well as high speed.
At low and moderate speeds, Froude numbers up to 0.25 — 0.30, the problem is solved by
traditional strip theory developed by Salvesen, Tuck & Faltinsen [18]. At higher speeds, Froude
numbers larger than approximately 0.4, the high speed formulation developed by Faltinsen &
Zhao [19] is used. The interaction from the strips upstream is considered in the high speed
theory. Since the higher Froude number of the model test is 0.35, both strip-theory and high-
speed formulations will be evaluated in this report.

When the traditional strip theory is used, the exciting forces and hydrodynamic forces can
be calculated using the strip theory approach. VERES can also use the direct pressure integration
method that divides the hull into panels and applies the pressure components at each panel to
compute the exciting and hydrodynamic forces.

There are two options in added resistance computation. The user can choose the Gerritsma
and Beukelman [10] method or direct pressure integration method. According to the former



method, that uses the slender body theory, the added resistance is strongly dependent on the
relative vertical motion between the ship and waves.

MODEL TEST RESULTS

The added resistance tests were conducted with the Model 5633-3. This model has the Joint
High Speed Sealift (JHSS) conventional Baseline Shaft and Strut (BSS) hullform with
Gooseneck Bulb (GB). A detailed description of the model can be found in Cusanelli [20] and
Cusanelli & Chesnakas [21]. The LBP of the full-scale ship is 950.5 ft (289.7 m) and that of the
model 1s 27.857 ft (8.491 m) and the scale ratio is 34.121.

The tests were carried out at NSWCCD in the Deep Water Basin (Carriage 2). The model
was restrained in surge, sway and yaw motions, but was free to heave, pitch and roll. The model
was attached to the carriage towing girder using two linear bearing floating platform ‘Cusanelli’
tow posts [22] at forward and aft positions. Double-axis gimbal assemblies were used to connect
the tow posts and the model. They were mounted on two linear glide rails that were locked in a
single longitudinal position throughout the testing. Primary drag force was measured at the
forward tow post using a DTMB 4-inch block gauge of 100 Ibf capacity. A secondary drag force
measurement was made at the aft post using a 4—inch block gauge of 50 Ibf capacity. During
testing, the second drag gauge was allowed to ‘float’ so as to impart minimal forces on the
model. Details of the experimental setup and instruments were described in Cusanelli [23].

The full-scale speeds of 25 and 36 knots, with Froude numbers of 0.24 and 0.35,
respectively, were tested in regular head waves. The model was towed at constant speeds of 4.28
and 6.16 knots, respectively. Although the model was allowed to roll, the measured roll angles
were very small in the head seas tested.

Since added resistance is the difference between the mean total drag in waves and the calm
water drag, accurate measurements of drag in calm water and in waves are needed. Obtaining
accurate experimental data on added resistance is difficult because of the small drag increments
to be measured. The added resistance depends on the square of the incoming wave amplitude.

In order to compute the resistance in waves, the data are analyzed over a time interval
corresponding to an integer number of wave encounter cycles [13]. This was necessary because
the linear oscillatory part of the surge exciting force is larger in amplitude than the mean added
resistance. Therefore, taking an average of the drag signal over a fraction of a cycle of the
oscillation would seriously bias the estimate of the mean value.

Added resistance experiments were carried out over a range of frequencies or wavelengths.
A number of runs were selected with different wave heights to determine if the mean added
resistance did, in fact, vary with the square of wave amplitude. All tests were conducted in head
seas at two ship speeds.

Summary of the test results are given in Tables 1 and 2 for Froude numbers of 0.24 and
0.35, respectively. A spot number (denoted as SpotNo in tables), along with test number
(TestNo), was assigned to each test. Only a middle portion of the time-series data was used for
the Fourier series analysis and the actual number of cycles used for the analysis was given in the
third column (Ncyc). Measured average speed (AvSpeed) and its corresponding Froude number
(FrNo) was given in the fourth and fifth columns. The wave height 24 (WaveHt), encounter
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frequency @, (EnOme), frequency @ (Omega), wave length 4 (Lamdba), wave number &

(WavNum), ratio of the wave-height/wave-length 24/ A4 (wh/Lam), ratio of the wave-
length/LBP A/ LBP (Lam/LBP), average total drag (AvgDrag), normalized added resistance
(NormAddRes), magnitude of the heave RAO and magnitude of the pitch RAO were tabulated
for all test conditions.

The normalized added resistance is defined as

L (1)
pgA’B* | LBP’

where R is the average added resistance that is equal to the mean total resistance minus calm

water resistance and A is the amplitude of the incoming wave. The ship length, LBP and the
beam, B were used in this normalization.

The magnitude of the heave RAO is normalized using the amplitude of the incoming
wave A4 , and the magnitude of the pitch RAO is normalized using k4, i.e.

T apnd s (2)
A kA

The model test conditions are plotted in Figures 1 and 2, for the Froude numbers 0.24 and
0.35, respectively. The Spot numbers that are given in the second columns in Tables 1 and 2 are
written next to the symbols for convenience. As shown in these figures, various wave-
length/LBP values were tested while the ratios of the wave-height/wave-length were kept around
0.013. Meanwhile, the effect of the incoming wave amplitudes was investigated at the fixed
A/ LBP ratios of 0.9 and 1 when the Froude numbers were 0.24 and 0.35, respectively.

The magnitudes of the heave and pitch RAOs are shown in Figures 3 — 6. The ratio of the
wave-height/wave-length of the corresponding test points are plotted in the bottom figures in
order to show the effect of the incoming wave amplitude. The results at A/ LBP= 0.9 and 1 for
the Froude numbers of 0.24 and 0.35, respectively, indicate that the heave and pitch RAOs are
slightly dependent on the incoming wave amplitude 4 . The values of the heave and pitch RAOs
varied by about 10 % and 20 %, respectively, when2A4/ A varied from 0.005 to 0.02 in these
model tests.

The normalized added resistance, plotted in Figures 7 and 8, show that the added resistance
may not vary with the square of wave amplitude. However, the limited data sets of this test did
not allow the prediction of any conclusive functional dependency. More accurate measurements
of the drag and wave amplitude are necessary since the measured values of the added resistance
are relatively small. Figures 9 and 10 show the added resistance (in 1bf). In order to calculate the
added resistance, the calm water resistance of 17.198 Ibf and 35.238 Ibf for the Froude numbers
0f 0.24 and 0.35, respectively, were subtracted from the total average drag. It is shown that the
added resistances are indeed very small especially when the incoming wave amplitudes are



small. Although the experimental results by Strom-Tejsen et al. [2] suggest that the linear
relationship between the added resistance and wave-amplitude square can be considered a good
approximation, the exact correlation may be dependent on the geometry of the ship hulls.

Test results in Figures 7 and 8 show that the maximum added resisitance occurs when the
ratio of wave-length/LBP is about 1 for Froude number of 0.35 and when the ratio is between
0.85 — 1 for Froude number of 0.24. The values of the normalized added resistance for the high
speed are larger than those of the lower ship speed as expected. It is believed that the normalized
added resistance has a maximum value when the wave length is of the order of the ship length
and that the maximum added resistance occurs when the relative vertical motion between the
ship and the waves is large [24].

COMPARISON WITH NUMERICAL SIMULATION RESULTS

In this section, the model test data will be compared with the simulation results from
SWANI1, LAMP2 and VERES. Only the test data with ratios of the wave-height/wave-length of
about 0.013 will be used for comparisons. The heave and pitch RAOs are normalized by 4 and
kA , respectively, and the added resistance was normalized using Equation (1) given in the
previous section.

Figures 11 — 13 show the comparison between the test data and the numerical simulation
results from SWANI. The experimental data were plotted using symbols (black dots) and the
numerical results were plotted using solid lines. As shown in the bottom of Figure 13, the ratio of
wave-height/wave-length of the corresponding experimental data was about 0.013. The effect of
sinkage and trim condition was investigated by using three different values for SWANI
calculations. The sinkage and trim values from the test data are 0.2576 m and 0.1 degrees for the
25 knot test and 0.602 m and 0.23 degrees for the 36 knot one, where positive trim value
represents the bow-down condition. The other nonzero sinkage and trim values in SWAN|
simulation were obtained from the steady calculations of SWANI.

When the Froude number is 0.24, different sinkage and trim values do not affect the heave
and pitch motions as well as the added resistance. However, the peak values and peak locations
of the heave and pitch motions and the added resistance are dependent on the sinkage and trim
values in the high speed case when the Froude number is 0.35.

It is shown in Figures 11 and 12 that the pitch RAOs from SWAN1 prediction with the
sinkage and trim values of the test data have good agreement with the experimental results at
both speeds. However, SWANI over-predicted the magnitude of the heave RAO, especially the
maximum values. As shown in Figure 13, SWAN1 under-predicted the normalized added
resistance at both speeds. Meanwhile, the peak location of the added resistance from the SWANI
occurs at larger wave-length/LBP value when the Froude number was 0.35.

Figures 14 — 16 show the results from LAMP2 predictions. In order to investigate the effect
of the wave amplitude in the LAMP2 calculations, two different values of the incoming wave
amplitudes were used with the wave-height to wave-length ratios of 0.005 and 0.01. It is shown
that the difference in the wave amplitude does not affect the heave and pitch motions as well as
the added resistance. Comparison with the model test data show that LAMP2 over-predicted the



heave and pitch motions at both speeds. Meanwhile, LAMP2 under-predicted the normalized
added resistance.

Figures 17 and 18 show the heave and pitch motions from VERES predictions using
different calculation methods. ‘Strip-Strip’ denotes the case when the strip-theory formulation is
used and the strip theory is applied to compute the exciting forces and hydrodynamic forces.
‘Strip-Pressure’ denotes the case when the pressure integration is used for the exciting and
hydrodynamic force calculations along with the strip-theory formulation. The high-speed
formulation is denoted by ‘High-Pressure’. The ‘High-Pressure’ method, that uses the high-
speed formulation with the pressure integration for the forces, produces larger magnitude of the
heave and pitch RAOs compared to the other two methods. VERES user’s manual recommends
to use strip-theory formulation for Froude numbers up to 0.25 — 0.30 and high speed formulation
for Froude numbers larger than 0.4. The results in Figures 17 and 18 indicate that the strip-theory
formulation predicts better for the Froude numbers tested.

Since there are two options to compute the added resistance, there are five combinations of
methods for the added resistance predictions in VERES. As shown in Figure 19, the peak values
of the normalized added resistance using different methods are varying widely. It is shown that
the ‘Strip-Pressure-GB’ method, that uses the strip-theory formulation, pressure integration for
the forces and Gerritsma and Beukelman’s added resistance calculation, produces the best
agreement with the measured heave, pitch motions and added resistance.

The comparison between the model test data and numerically predicted results from all
three simulation codes are summarized in Figures 20 — 22. The results from SWANI
calculations using the sinkage and trim values obtained from the test data, LAMP2 predictions
with the wave-height to wave-length ratios of 0.01, and VERES using the ‘Strip-Pressure-GB’
method predictions were plotted using green, blue and red lines, respectively. It is shown in
Figures 20 and 21 that the predicted heave and pitch motions using different numerical
prediction codes are in good agreement. The magnitude of the heave RAO was slightly over-
predicted by most of the prediction codes. The magnitude of the pitch RAO was well predicted
by all numerical codes.

Figure 22 shows that SWANI produces the best prediction of the model test data for the
normalized added resistance. Although the results from VERES appear closer to the test data, it
must be noted that only the best match VERES results, among many other available methods, are
presented in this figure. The added resistance from LAMP2 prediction was lower than the test
data at both ship speeds.

It can be summarized that SWAN1 produces the best predictions for the added resistance as
well as the heave and pitch motions. The other codes, LAMP2 and VERES also produced
reasonably good comparisons.

SUMMARY

The model test data were compared with SWAN1, LAMP2 and VERES simulation results.
The added resistance tests were conducted with the Model 5633-3 that has the Joint High Speed
Sealift (JHSS) conventional Baseline Shaft and Strut (BSS) hull form with Gooseneck Bulb
(GB). During the test on Carriage 2, the model was restrained in surge, yaw and sway motions,
but was free to heave, pitch and roll. Two ship speeds with Froude numbers of 0.24 and 0.35
were tested in regular head waves.



The comparison between test data and numerical simulation results show that heave and
pitch motions are well predicted by all three codes investigated. For the added resistance,
SWANI, LAMP2 and VERES produced good agreement with the test data. SWAN1 produced
the best predictions for the added resistance as well as the heave and pitch motions.
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Fr=0.24, Model Speed = 4.3 knots
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Figure 1. Test conditions when Fr = 0.24.
Fr = 0.35, Model Speed = 6.2 knots
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Figure 2. Test conditions when Fr = 0.35.
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Heave RAO magnitude, Fr = 0.24
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Figure 3. Magnitude of heave RAO of JHSS Model 5633-3 in head waves when Fr = (.24.
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Heave RAO magnitude, Fr = 0.35
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Figure 4. Magnitude of heave RAO of JHSS Model 5633-3 in head waves when Fr = 0.35.
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Pitch RAO magnitude, Fr = 0.24
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Figure 5. Magnitude of pitch RAO of JHSS Model 5633-3 in head waves when Fr = 0.24.

Pitch RAO magnitude, Fr = 0.35
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Figure 6. Magnitude of pitch RAO of JHSS Model 5633-3 in head waves when Fr = 0.35.
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Normalized Added Resistance: Fr = 0.24
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Figure 7. Normalized added resistance of JHSS Model 5633-3 when Fr = 0.24.
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Figure 8. Normalized added resistance of JHSS Model 5633-3 when Fr = 0.35.
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Average Added Resistance: Fr = 0.24
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Figure 9. Average added resistance of JHSS Model 5633-3 when Fr = (.24.
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Figure 10. Average added resistance of JHSS Model 5633-3 when Fr = 0.35.
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